AP微积分Calculus(AB)-选择题-Finding limits找极限


EduUnited.org
L'Hospital's Rule

Sample-Section 1-Part A-Q1

$
\displaystyle \lim_{x \rightarrow \pi} \frac{\cos x + \sin (2x) + 1}{x^2 - \pi^2}
$ is

答案:

分析Analysis

  • $\displaystyle \lim_{x \rightarrow \pi} \cos x = \cos \pi = -1$, $\displaystyle \lim_{x \rightarrow \pi} \sin (2x) = \sin 2\pi = 0$

    $
    \displaystyle \Rightarrow \lim_{x \rightarrow \pi} (\cos x + \sin (2x) + 1) = -1 + 0 + 1 = 0
    $

  • $\displaystyle \lim_{x \rightarrow \pi} (x^2 - \pi^2) = \pi^2 - \pi^2 = 0$

  • We have form $\frac{0}{0}$, so we can use the L’Hospital’s Rule to solve the problem.

    \begin{align}
    &\lim_{x \rightarrow \pi} \frac{\cos x + \sin (2x) + 1}{x^2 - \pi^2} \\
    = & \lim_{x \rightarrow \pi} \frac{(\cos x + \sin (2x) + 1)’}{(x^2 - \pi^2)’} \\
    = & \lim_{x \rightarrow \pi} \frac{-\sin x + 2\cos 2x}{2x} \\
    = & \frac{-\sin \pi + 2 \cos 2\pi}{2\pi} = \frac{2}{2\pi} = \frac{1}{\pi}
    \end{align}

领取免费学习资料

提交电子邮件领取免费Alevel经济学资料(其他问题请留言)
Please submit your e-mail to obain a free copy of Alevel Economics notes.

联系我们CONTACT US

  • 微信号: 微信EduUnitedOrg
  • QQ: 1850929975
  • 学习视频-抖音号: EduUnited
  • Twitter:
  • Email: 1850929975@qq.com
联系我们: 微信EduUnitedOrg 
 QQ: 1850929975

 上一篇
下一篇 
  目录